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The finite integral transform method is used to obtain the solution of unsteady heat conduction problems
for a hollow sphere with a moving internal boundary and various boundary conditions at the outer surface.
For the solution of the problems of interest integral transform formulas are presented with kernels (16),

(20), and (24) and the corresponding inversion formulas (18), (22), (26), (29) and characteristic equations
a7, (21), (25), (28), (31), (33).

Using a method analogous to that used in [1, 2], we shall obtain solutions to spherically-symmetric problems in-
volving a moving inner boundary and various outer boundary conditions.

Up to the moment when the boundary begins to move, the mathematical formulation of the problem is
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Using the appropriate integral transform, one can obtain the solution to (1)-(4). Assume this solution to be @ =
= 1Y/2f (t, 1), where
0 = r'z21(r, 7). (5)

From the condition

tm = fo(r, 7o) (6)

one can find 7y = ®(Ry, t(p)), i.e. the time at which the boundary begins to move. From the time T = ¢ on, the bound-
ary 1 = Ry moves according to the law r = s(7). In that case the mathematical formulation will differ from (1)-(4), first
because of the conditions
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and, second, because of the additional heat-balance condition at the moving boundary
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Now it is required to find the temperature field for r > 7, s(T) =1 =R, and the law of motion of the boundary.
We shall divide the arbitrary time interval T = Ty — Ty into n parts, as in [1, 2], corresponding to the times 7y, Ty, ...,
To» Tp = To» &T; = 741 — Tj. The time 7; corresponds to the point Oj [r; = s(1j)] on the r axis, and we shall assume that
the point Oj is stationary for 7; < T < Tj4 and jumps instantaneousty to Oj4; at T = Tj4;. As a result we obtain a step-
like s;,(7) instead of s(7). It can be proved easily that the function t;(r, 7)satisfies (1) with r > r;, 7> 7, the initial
condition t;(r, 7) = f;(r, T3) = ty_4(s, Ti), boundary condition (8) atr =s; =s(r;), and boundary condition (4).

Using (5), one can solve the above problem by the methed of finite integral transforms. Assuming the solution t
be

L(r, Dy =[(r, %) (10)
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and taking into account that

filr, ©)=t_,(r, ), (11

we can express tj .y in (10) in terms of tj ,, then express tj . in terms of t; 5, etc. The result is
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Using (12), we can determine the unknown values rj = s(1;), i.e., the approximate law of motion of the boundary. Re-
write Eq, (9) in the form
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The right-hand side of (13) is a known function of 7. Integrating (13) over 7 from T; 10 T{4; and adding the equations for
i=0, 1, 2,...,1(l=n), we obtain
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Knowing s; (1) from (12), we obtain the functions tj(r, 7). We shall now illustrate this method by means of specific ex-
amples.

Hollow sphere with boundary condition of the first kind at the outer surface (a(T) = B(T) = 1, Y(T) = @ (T)).

Applying to the function @ (r, T) the integral transform
R:
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where py are the roots of the characteristic equation

tgp,(k—1)=—up, an
with k = Rp/R;, and using the inversion formula
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we obtain the solution
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We determine 7 from Eq. (6). For the time 1 = Ty and r = 1; = 5(7;) = §; we use transformation (15) with the ker-
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where &y; are the roots of the characteristic equation
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with k; = Ry/R;. Using the inversion formula
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we obtain the solution
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Substituting (23) in (18) we determine s;(T), and substituting s;(7) in (23) we determine ©;(xr, T).

Hollow sphere with boundary condition of the second kind at the outer surface (1) =1, B(1) =0, ¥(T) = A lqy(7),
Qp(T) < qy(7))-

Applying, in this case, integral transform (15) with the kernel
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where pup are the roots of the characteristic equation
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and using the inversion formula
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we obtain the solution
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while for T = r; and r = 1; we use integral transform (15) with kernel (20) in which 6”1 are the roots of the equation
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we find the solution
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The unknown functions are determined in a manner analogous to the preceding case,

Hollow sphere with boundary condition of the third kind at the outer surface (a(1) =1, y(1) =0, B(T) = o/A).

In this case we use integral transform (15) with kernel (24) in which Hy are the roots of the equation

tgu,(k—1) = p, (k— 1 + Bi/(1 + kp2— Bi,) . 31)
Using inversion formula (26), we find the solution
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For 7 = 7y we use transformation (15) with kernel (20) in which 5”1 are the roots of the equation

tgd,, (k— 1) = 3, k/(1 —Bis). ©3)
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The inversion formula is, in this case, of the form of (29). Hence the solution is
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Analogous methods can be used to solve problems involving phase change at the outer boundary or time-dependent
physical properties,
NOMENCLATURE

a, » — thermal diffusivity and conductivity, respectively; t(p) — temperature of phase transformation; p — density;
o — heat wansfer coefficient; Q — total quantity of heat passing through inner boundary; F - latent heat of phase trans-
formation; Fo(l, 7) = ar/R%, Fo(i, 1) = a'r/r%, Fo(i, 7;) = a‘ri/r% — Fourier numbers; Biy = aRy/A —Biot number.
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